standard_model¶
Standard model class(es).
- class graphnet.models.standard_model.StandardModel(*args, **kwargs)[source]¶
Bases:
Model
Main class for standard models in graphnet.
This class chains together the different elements of a complete GNN-based model (detector read-in, GNN architecture, and task-specific read-outs).
Construct StandardModel.
- Parameters:
args (Any) –
kwargs (Any) –
- Return type:
object
- property target_labels: List[str]¶
Return target label.
- property prediction_labels: List[str]¶
Return prediction labels.
- forward(data)[source]¶
Forward pass, chaining model components.
- Return type:
List
[Union
[Tensor
,Data
]]- Parameters:
data (Data) –
Perform shared step.
Applies the forward pass and the following loss calculation, shared between the training and validation step.
- Return type:
Tensor
- Parameters:
batch (Data) –
batch_idx (int) –
- training_step(train_batch, batch_idx)[source]¶
Perform training step.
- Return type:
Tensor
- Parameters:
train_batch (Data) –
batch_idx (int) –
- validation_step(val_batch, batch_idx)[source]¶
Perform validation step.
- Return type:
Tensor
- Parameters:
val_batch (Data) –
batch_idx (int) –
- compute_loss(preds, data, verbose)[source]¶
Compute and sum losses across tasks.
- Return type:
Tensor
- Parameters:
preds (Tensor) –
data (Data) –
verbose (bool) –
- predict(dataloader, gpus, distribution_strategy)[source]¶
Return predictions for dataloader.
- Return type:
List
[Tensor
]- Parameters:
dataloader (DataLoader) –
gpus (List[int] | int | None) –
distribution_strategy (str | None) –
- predict_as_dataframe(dataloader, prediction_columns, *, additional_attributes, gpus, distribution_strategy)[source]¶
Return predictions for dataloader as a DataFrame.
Include additional_attributes as additional columns in the output DataFrame.
- Return type:
DataFrame
- Parameters:
dataloader (DataLoader) –
prediction_columns (List[str] | None) –
additional_attributes (List[str] | None) –
gpus (List[int] | int | None) –
distribution_strategy (str | None) –