training_config¶
Config classes for the graphnet.training module.
- class graphnet.utilities.config.training_config.TrainingConfig(*, target, early_stopping_patience, fit, dataloader)[source]¶
Bases:
BaseConfig
Configuration for all trainings.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.
- Parameters:
target (str | List[str]) –
early_stopping_patience (int) –
fit (Dict[str, Any]) –
dataloader (Dict[str, Any]) –
-
target:
Union
[str
,List
[str
]]¶
-
early_stopping_patience:
int
¶
-
fit:
Dict
[str
,Any
]¶
-
dataloader:
Dict
[str
,Any
]¶
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_fields: ClassVar[dict[str, FieldInfo]] = {'dataloader': FieldInfo(annotation=Dict[str, Any], required=True), 'early_stopping_patience': FieldInfo(annotation=int, required=True), 'fit': FieldInfo(annotation=Dict[str, Any], required=True), 'target': FieldInfo(annotation=Union[str, List[str]], required=True)}¶
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.