layers¶
Class(es) implementing layers to be used in graphnet models.
- class graphnet.models.components.layers.DynEdgeConv(nn, aggr, nb_neighbors, features_subset, **kwargs)[source]¶
Bases:
EdgeConv
,LightningModule
Dynamical edge convolution layer.
Construct DynEdgeConv.
- Parameters:
nn (
Callable
) – The MLP/torch.Module to be used within the EdgeConv.aggr (
str
, default:'max'
) – Aggregation method to be used with EdgeConv.nb_neighbors (
int
, default:8
) – Number of neighbours to be clustered after the EdgeConv operation.features_subset (
Union
[Sequence
[int
],slice
,None
], default:None
) – Subset of features in Data.x that should be used when dynamically performing the new graph clustering after the EdgeConv operation. Defaults to all features.**kwargs (
Any
) – Additional features to be passed to EdgeConv.
- class graphnet.models.components.layers.EdgeConvTito(nn, aggr, **kwargs)[source]¶
Bases:
MessagePassing
,LightningModule
Implementation of EdgeConvTito layer used in TITO solution for.
‘IceCube - Neutrinos in Deep’ kaggle competition.
Construct EdgeConvTito.
- Parameters:
nn (
Callable
) – The MLP/torch.Module to be used within the EdgeConvTito.aggr (
str
, default:'max'
) – Aggregation method to be used with EdgeConvTito.**kwargs (
Any
) – Additional features to be passed to EdgeConvTito.
- class graphnet.models.components.layers.DynTrans(layer_sizes, aggr, features_subset, n_head, **kwargs)[source]¶
Bases:
EdgeConvTito
,LightningModule
Implementation of dynTrans1 layer used in TITO solution for.
‘IceCube - Neutrinos in Deep’ kaggle competition.
Construct DynTrans.
- Parameters:
nn – The MLP/torch.Module to be used within the DynTrans.
layer_sizes (
Optional
[List
[int
]], default:None
) – List of layer sizes to be used in DynTrans.aggr (
str
, default:'max'
) – Aggregation method to be used with DynTrans.features_subset (
Union
[Sequence
[int
],slice
,None
], default:None
) – Subset of features in Data.x that should be used when dynamically performing the new graph clustering after the EdgeConv operation. Defaults to all features.n_head (
int
, default:8
) – Number of heads to be used in the multiheadattention models.**kwargs (
Any
) – Additional features to be passed to DynTrans.