dynedge_kaggle_tito¶
Implementation of DynEdge architecture used in.
IceCube - Neutrinos in Deep Ice
Reconstruct the direction of neutrinos from the Universe to the South Pole
Kaggle competition.
Solution by TITO.
- class graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO(*args, **kwargs)[source]¶
Bases:
GNNDynEdge (dynamical edge convolutional) model.
Construct DynEdge.
- Parameters:
nb_inputs (
int) – Number of input features on each node.features_subset (
slice, default:slice(0, 4, None)) – The subset of latent features on each node that are used as metric dimensions when performing the k-nearest neighbours clustering. Defaults to [0,1,2,3].dyntrans_layer_sizes (
Optional[List[Tuple[int,...]]], default:None) – The layer sizes, or latent feature dimenions, used in the DynTrans layer.global_pooling_schemes (
List[str], default:['max']) – The list global pooling schemes to use. Options are: “min”, “max”, “mean”, and “sum”.args (Any) –
kwargs (Any) –
- Return type:
object