reconstruction¶
Reconstruction-specific Model class(es).
- class graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs azimuthal angle and associated kappa (1/var).
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['azimuth']¶
- default_prediction_labels = ['azimuth_pred', 'azimuth_kappa']¶
- nb_inputs = 2¶
- class graphnet.models.task.reconstruction.AzimuthReconstruction(*args, **kwargs)[source]¶
Bases:
AzimuthReconstructionWithKappa
Reconstructs azimuthal angle.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['azimuth']¶
- default_prediction_labels = ['azimuth_pred']¶
- nb_inputs = 2¶
- class graphnet.models.task.reconstruction.DirectionReconstructionWithKappa(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs direction with kappa from the 3D-vMF distribution.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['direction']¶
- default_prediction_labels = ['dir_x_pred', 'dir_y_pred', 'dir_z_pred', 'direction_kappa']¶
- nb_inputs = 3¶
- class graphnet.models.task.reconstruction.ZenithReconstruction(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs zenith angle.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['zenith']¶
- default_prediction_labels = ['zenith_pred']¶
- nb_inputs = 1¶
- class graphnet.models.task.reconstruction.ZenithReconstructionWithKappa(*args, **kwargs)[source]¶
Bases:
ZenithReconstruction
Reconstructs zenith angle and associated kappa (1/var).
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['zenith']¶
- default_prediction_labels = ['zenith_pred', 'zenith_kappa']¶
- nb_inputs = 2¶
- class graphnet.models.task.reconstruction.EnergyReconstruction(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs energy using stable method.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['energy']¶
- default_prediction_labels = ['energy_pred']¶
- nb_inputs = 1¶
- class graphnet.models.task.reconstruction.EnergyReconstructionWithPower(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs energy.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['energy']¶
- default_prediction_labels = ['energy_pred']¶
- nb_inputs = 1¶
- class graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty(*args, **kwargs)[source]¶
Bases:
EnergyReconstruction
Reconstructs energy and associated uncertainty (log(var)).
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['energy']¶
- default_prediction_labels = ['energy_pred', 'energy_sigma']¶
- nb_inputs = 2¶
- class graphnet.models.task.reconstruction.VertexReconstruction(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs vertex position and time.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['vertex']¶
- default_prediction_labels = ['position_x_pred', 'position_y_pred', 'position_z_pred', 'interaction_time_pred']¶
- nb_inputs = 4¶
- class graphnet.models.task.reconstruction.PositionReconstruction(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs vertex position.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['position']¶
- default_prediction_labels = ['position_x_pred', 'position_y_pred', 'position_z_pred']¶
- nb_inputs = 3¶
- class graphnet.models.task.reconstruction.TimeReconstruction(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs time.
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['interaction_time']¶
- default_prediction_labels = ['interaction_time_pred']¶
- nb_inputs = 1¶
- class graphnet.models.task.reconstruction.InelasticityReconstruction(*args, **kwargs)[source]¶
Bases:
Task
Reconstructs interaction inelasticity.
That is, 1-(track energy / hadronic energy).
Construct Task.
- Parameters:
hidden_size (
int
) – The number of nodes in the layer feeding into this tasks, used to construct the affine transformation to the predicted quantity.loss_function (
LossFunction
) – Loss function appropriate to the task.target_labels (
Union
[str
,List
[str
],None
], default:None
) – Name(s) of the quantity/-ies being predicted, used to extract the target tensor(s) from the Data object in .compute_loss(…).prediction_labels (
Union
[str
,List
[str
],None
], default:None
) – The name(s) of each column that is predicted by the model during inference. If not given, the name will auto matically be set to target_label + _pred.transform_prediction_and_target (
Optional
[Callable
], default:None
) – Optional function to transform both the predicted and target tensor before passing them to the loss function. Useful e.g. for having the model predict quantities on a physical scale, but transforming this scale to O(1) for a numerically stable loss computation.transform_target (
Optional
[Callable
], default:None
) – Optional function to transform only the target tensor before passing it, and the predicted tensor, to the loss function. Useful e.g. for having the model predict a transformed version of the target quantity, e.g. the log10- scaled energy, rather than the physical quantity itself. Used in conjunction with transform_inference to perform the inverse transform on the predicted quantity to recover the physical scale.transform_inference (
Optional
[Callable
], default:None
) – Optional function to inverse-transform the model prediction to recover a physical scale. Used in conjunction with transform_target.transform_support (
Optional
[Tuple
], default:None
) – Optional tuple to specify minimum and maximum of the range of validity for the inverse transforms transform_target and transform_inference in case this is restricted. By default the invertibility of transform_target is tested on the range [-1e6, 1e6].loss_weight (
Optional
[str
], default:None
) – Name of the attribute in data containing per-event loss weights.args (Any) –
kwargs (Any) –
- Return type:
object
- default_target_labels = ['inelasticity']¶
- default_prediction_labels = ['inelasticity_pred']¶
- nb_inputs = 1¶